Robust Control of Uncertain Time-delay Systems
نویسندگان
چکیده
The time delay in transport of material and energy is an inseparable part of many real industrial processes. Unfortunately, the presence of time-delay terms itself almost always brings problems in control and, quite naturally, the situation is even more complicated if this delay is uncertain. The source of the uncertainty can arise e.g. from simplifications during mathematical modelling, changes in physical parameters or various operational conditions. The main aim of the contribution is to show capabilities of robust algorithms designed via an algebraic approach in control of systems with parametrically uncertain time delay. The robust stability of the closed loop is graphically analyzed using the value set concept and the zero exclusion condition.
منابع مشابه
Delay-dependent robust stabilization and $H_{infty}$ control for uncertain stochastic T-S fuzzy systems with multiple time delays
In this paper, the problems of robust stabilization and$H_{infty}$ control for uncertain stochastic systems withmultiple time delays represented by the Takagi-Sugeno (T-S) fuzzymodel have been studied. By constructing a new Lyapunov-Krasovskiifunctional (LKF) and using the bounding techniques, sufficientconditions for the delay-dependent robust stabilization and $H_{infty}$ control scheme are p...
متن کاملDevelopment of RMPC Algorithm for Compensation of Uncertain Time-Delay and Disturbance in NCS
In this paper, a synthesis method based on robust model predictive control is developed for compensation of uncertain time-delays in networked control systems with bounded disturbance. The proposed method uses linear matrix inequalities and uncertainty polytope to model uncertain time-delays and system disturbances. The continuous system with time-delay is discretized using uncertainty po...
متن کاملModelling and Compensation of uncertain time-delays in networked control systems with plant uncertainty using an Improved RMPC Method
Control systems with digital communication between sensors, controllers and actuators are called as Networked Control Systems (NCSs). In general, NCSs encounter with some problems such as packet dropouts and network induced delays. When plant uncertainty is added to the aforementioned problems, the design of the robust controller that is able to guarantee the stability, becomes more complex. In...
متن کاملROBUST $H_{infty}$ CONTROL FOR T–S TIME-VARYING DELAY SYSTEMS WITH NORM BOUNDED UNCERTAINTY BASED ON LMI APPROACH
In this paper we consider the problem of delay-dependent robustH1 control for uncertain fuzzy systems with time-varying delay. The Takagi–Sugeno (T–S) fuzzy model is used to describe such systems. Time-delay isassumed to have lower and upper bounds. Based on the Lyapunov-Krasovskiifunctional method, a sufficient condition for the existence of a robust $H_{infty}$controller is obtained. The fuzz...
متن کاملStability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay
In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...
متن کاملDelay-Dependent Robust Asymptotically Stable for Linear Time Variant Systems
In this paper, the problem of delay dependent robust asymptotically stable for uncertain linear time-variant system with multiple delays is investigated. A new delay-dependent stability sufficient condition is given by using the Lyapunov method, linear matrix inequality (LMI), parameterized first-order model transformation technique and transformation of the interval uncertainty in to the norm ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007